Remainder Cordial Labeling of Graphs
Authors
Abstract:
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{f}(0) - e_f(1) right|leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labelled with even integers and odd integers. A graph $G$ with a remainder cordial labeling is called a remainder cordial graph. We investigate the remainder cordial behavior of path, cycle, star, bistar, crown, comb, wheel, complete bipartite $K_{2,n}$ graph. Finally we propose a conjecture on complete graph $K_{n}$.
similar resources
k-Remainder Cordial Graphs
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
full textTotally magic cordial labeling of some graphs
A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...
full textPD-prime cordial labeling of graphs
vspace{0.2cm} Let $G$ be a graph and $f:V(G)rightarrow {1,2,3,.....left|V(G)right|}$ be a bijection. Let $p_{uv}=f(u)f(v)$ and\ $ d_{uv}= begin{cases} left[frac{f(u)}{f(v)}right] ~~if~~ f(u) geq f(v)\ \ left[frac{f(v)}{f(u)}right] ~~if~~ f(v) geq f(u)\ end{cases} $\ for all edge $uv in E(G)$. For each edge $uv$ assign the label $1$ if $gcd (p_{u...
full text3-difference cordial labeling of some cycle related graphs
Let G be a (p, q) graph. Let k be an integer with 2 ≤ k ≤ p and f from V (G) to the set {1, 2, . . . , k} be a map. For each edge uv, assign the label |f(u) − f(v)|. The function f is called a k-difference cordial labeling of G if |νf (i) − vf (j)| ≤ 1 and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labelled with x (x ∈ {1, 2 . . . , k}), ef (1) and ef (0) respectively den...
full textFurther results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
full text$4$-Total prime cordial labeling of some cycle related graphs
Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...
full textMy Resources
Journal title
volume 49 issue 1
pages 17- 30
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023